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AN ADDITIVE SCHWARZ METHOD 
FOR VARIATIONAL INEQUALITIES 

LORI BADEA AND JUNPING WANG 

ABSTRACT. This paper proposes an additive Schwarz method for variational 
inequalities and their approximations by finite element methods. The Schwarz 
domain decomposition method is proved to converge with a geometric rate 
depending on the decomposition of the domain. The result is based on an 
abstract framework of convergence analysis established for general variational 
inequalities in Hilbert spaces. 

1. INTRODUCTION 

Over the last two decades, there has been a very active study of the domain de- 
composition method for approximate solutions of partial differential equations. This 
study was motivated by an increasing need for the solution of large-scale problems 
in sciences and engineering. The domain decomposition method has the capability 
of providing numerical solvers which are portable, efficient, and parallelizable on 
parallel machines. 

The problem of variational inequalities arises from many physical and econom- 
ical applications such as fluid flow in porous media, the behavior of elasto-plastic 
materials and lubrification phenomena in mechanics, and valuation of American 
options in modern finance. Those problems are in general of free boundary type 
and share features similar to the well-known obstacle problem. The method of 
variational inequalities is a powerful technique to tackle such problems in theory, 
and also in practical computation. 

The multiplicative and additive Schwarz methods for elliptic linear problems 
have been studied by many researchers, among them Lions [14]-[16], Chan, Hou and 
Lions [4], Bramble, Pasciak, Wang and Xu [3], and Badea [1], for the multiplicative 
methods (the classical Schwarz alternating algorithm), and Dryja [5], Dryja and 
Widlund [6], [7] and Nepomnyashchikh [17], for the additive version. For problems 
related to variational inequalities, there are results by Lions [14], Hoffman and Zou 
[8], Kuznetsov and Neittaanmaiki [10], Kuznetsov, Neittaanmaiki and Tarvainen 
[11]-[12], Lii, Liem and Shih [18], Tarvainen [19], Badea [2], and Zeng and Zhou 
[20] in the domain decomposition method, and by Kornhuber [9] and Mandel [13] 
in the multigrid method. Despite those results, the functioning and convergence of 
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the Schwarz domain decomposition method is not fully understood for variational 
inequalities. 

The objective of this paper is to exploit a convergence theory for the additive 
Schwarz method. As revealed in [14, 3, 6] for elliptic equations, a good convergence 
often results from norm estimates for some error reduction operators. While the 
existence of such error reduction operators is still a question in many applications, 
the corresponding norm estimate is non-trivial, due to the fact that the operators 
involved are related to projections onto closed and convex subsets of a Hilbert space. 

We shall reformulate the additive Schwarz algorithm in a way which admits a 
nice recurrence for the errors between two consecutive steps. Through a study for 
projection operators onto closed and convex subsets of a Hilbert space, we shall 
prove a geometric convergence for the additive Schwarz method. For simplicity, the 
theory will be demonstrated for the obstacle problem only. 

The paper is organized as follows. In Section 2, we study the variational in- 
equality in an abstract framework. The general result developed in Section 2 shall 
be applied to an obstacle problem in Sobolev space in Section 3. In Section 4, we 
analyze the Schwarz method in the finite element space. 

2. AN ABSTRACT FRAMEWORK 

2.1. An iterative scheme. Let V be a real Hilbert space with inner product 
(,.), and a(., ) a symmetric bilinear form, defined on V x V, which is bounded and 
coercive. Let K be a closed convex subset of V. Consider the abstract problem 
which seeks u E K satisfying 

(2.1) a(u, v-u) > f(v-u), Vv E K, 

where f is a bounded linear functional on V. Since the bilinear form a(., ) is 
equivalent to the original inner product of the Hilbert space V, we may identify 
a(, ) as the inner product of V. 

The problem (2.1) is equivalent to the following minimization problem: Find 
u E K such that 

(2.2) F(u) < F(v), Vv E K,' 

where F(v) = 'a(v, v) - f(v) is a functional defined on the Hilbert space V. 
We would like to approximate the solution of (2.1) by iterative procedures. To 

this end, let Vi, i = 1,... , J, be a sequence of subspaces of V such that 

V =Vl + V2 + -+VJ. 

Let un E K be the current approximation of the exact solution u of (2.1). We 
correct un in the subspace Vi by seeking vi E Vi such that un,i = un + vi E K and 

F(un+vi)<F(un+V), VvEViu un+vEK. 

By introducing a convex set 

Kn,i = {v: E Vi, V + un E K}, 

we can make the above problem equivalent to the seeking of vi E Kn,i satisfying 

(2.3) F(Un + vi) < F(un + v), Vv E Kn,i 
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The solution vi of (2.3) is considered as a correction of u,T in Vi. The total correction 
for U"T is Ei vi, which, in general, over-corrects u,L. Therefore, we shall scale the 
total correction by a scalar p > 0 and update u,T by 

.1 

(2.4) un+ l = un + P ZVi. 
i=l 

The parameter p in (2.4) should be selected such that u,, + p =l Vi E K. In 
particular, any p < 1/J would be a good candidate, since, with ,i = pJ < 1, we 
have 

u7t + = (1 - Aj)un, + pA(un + I >j1 vi) 
= (1 -u7) un + A 2.=1i (u7t + v2) 

which is a convex sum of vectors in the convex set K. 
The minimization problem (2.3) can be written as a variational inequality which 

seeks vi E K?,,i such that 

(2.5) a(u, + vi, v-vi) > f (v-vi), Vv E K,,Z. 

For standard equalities, one can replace f(v - vi) in (2.5) by a(u,v - vi), with 
u being the exact solution of the original problem. This substitution is generally 
prohibited for variational inequalities, due to the nonlinearity of the problem. For 
sake of convergence analysis, we shall make the following assumption: 

Hi: The problem (2.5) is equivalent to finding vi E Kr,,i such that 

(2.6) a (u,, + Vi, V -Vi ) > a (u, v -Vi ), Vlv E K,t si 
In other words, the correction is given by solving 

(2.7) a(vi, v-vvi) > a(u-u , v-V ) Vv E Kr,, i . 

If Pr.,i denotes the projection operator onto the closed convex subset KrL,i, then 
(2.6) says that the correction vi of u,T in the subspace Vi is the projection of the 
difference u - u,T in K,t,i. Thus, 

(2.8) vi = P,L i(u -un). 

The following is a compact form of the proposed iterative scheme. 

Algorithm 2.1. Starting from any u( E K, one computes a sequence.of approxi- 
mations {ul?L} as follows: 

1. Compute the projection of the error u - u,T on Kr,i by solving vi E KrL,i from 
(2.7) or (2.5). 

2. Compute the new approximation u,t+1 from (2.4). 

Let e7, = u - u.T be the error at step n. Since u,7+1 is given by (2.4) and 
vi = P?t,i(u - ulL), then 

Un+ = Un + PE P?L,i(u- U-t 

i=l 

It follows that 

U - Ut+l = U - U-t p E P?t,i(u -Urt 

i=1 
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This can be rewritten as 
J 

en+1= (I-pE Pn,i)en. 
i=1 

By introducing an additive operator 
J 

Tn = ZPn,i, 
i=1 

we arrive at the following error recurrence: 

(2.9) en+1 = (I - pTn)en, 

which resembles the error reduction relation for equalities. Thus, convergence of 
the Schwarz method can be established by analyzing the additive operator Tn. 

2.2. Some technical estimates. We present some inequalities valuable for study- 
ing the convergence of the abstract iterative Algorithm 2.1. For simplicity, we 
assume that a(., (, ) 

Let Ki, i = 1, ,J, be a set of convex and closed subsets of V. Denote by 
Pi the projection operator onto Ki. Recall that the projection Piw E Ki for any 
w E V is defined as the solution of the following inequality: 

(2.10) (Piw, v - P%w) > (w,v - Pi w), Vv E Ki. 

The corresponding additive operator is given by 

(2.11) T =P1+P2+ +PJ 

Assume that each convex set Ki contains the vector zero. This assumption is 
satisfied for Ki = Kn,i since, by assumption, un is a vector in K. By taking v = 0 
in (2.10), one has the following: 

(2.12) (Piw, Piw) < (w, Piw), Vw E V. 

Furthermore, (2.10) implies 

(2.13) (w,v - Piw) < (Piw,V - Piw) < (Piw,v), Vv E Ki. 

Definition 2.1. A vector w E V is said to have an admissible decomposition with 
respect to {Ki} and a fixed constant Co if there exists a partition of w, 

(2.14) W = W1 + W2 + + WJ, wi E Ki, 

such that 
J 

(2.15) W? 1w12 < CoIIw112. 
i=l1 

Lemma 2.1. If w has an admissible decomposition with respect to {Ki} and the 
constant Co, then 

(2.16) (w, w) < (2 + Co) (w, Tw). 

Proof. Using (2.14), one has 
J J J 

(2.17) (w,Iw) = (w, wi) = Z(w, wi - Piw) + Z(w, Piw). 
i=1 i=1 i=1 
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FRom (2.13), we have (w, wi - Piw) < (Piw, wi). Thus, 
J J 

(2.18) (w, w) < Z(Piw, wi) + Z(w, Piw). 
i=l1= 

Apply the Schwarz inequality to the first term on the right-hand side of (2.18): 

J J / J \ ~~~~~~1/2 J \1/2 

E(Pivw'i) < E 1piwIl Ilwi 11 < t EPW112) tE 
IIW, 112) 

i=1 i=1 = = 

Using the assumption (2.15) and (2.12), we arrive at 

(Piw,wi) <? lC lwll (E(w, Pw)) 1/ I2 +2 
(WP%w) 

i=1 =1 i= 1 

Substituting the above into (2.18) gives 
J 

w112 111112 + (1 + Co/2) (w,Piw), 
i=l1 

which can be rewritten as 

llw2 (2+CO) (w, Piw) = (2 + Co)(w, Tw). 
i=1 

This completes the proof of the lemma. O 

Next, we investigate the boundedness of the operator T. To this end, assume 
that Tij E [0,1] is a real number that satisfies 

(2.19) I(Piw,Pjv)I <? Tij1PiW11 lIPjvII VW,v E V. 

Let T = (T3j)jxj, and let ITI be the norm of the matrix T with respect to the ?2 

norm in RJ. 

Lemma 2.2. Let T be defined as above. Then, 

(2.20) IITwII2 < ITI (w,Tw), Vw E V. 

Consequently, 

(2.21) IITwII2 < ITI2 IIWII2, Vw E V. 
Proof. From (2.11), 

IITwIl2 = (Tw,Tw) = E (Piw,Piw). 
i,j=l 

Using the inequality (2.19), we obtain 
J J 

ITWII2 < E TijIIPWWIIIIPjWII < ITI E IIP%WII2. 
i,j=l i=1 

Thus, it follows from (2.12) that 

IITw 112 < TI E(w, Piw) = ITI (W, Tw), 
i=1 



1346 L. BADEA AND J. WANG 

which verifies (2.20). The proof of (2.21) is a direct application of (2.20) and the 
Cauchy-Schwarz inequality. O 

The result on the operator T is summarized as follows: 

Theorem 2.1. If w E V has an admissible decomposition with respect to {Ki} and 
the constant Co, then 

(2.22) (2 + Co)-1 w12 < (w, Tw) < ITIIIW112, 

and 

(2.23) (2 + Co)-211wI12 < IlTw 12 < IT? 2 IIWI12 

Proof. The left part of (2.22) was seen in Lemma 2.1. The right part is proved by 
using Lemma 2.2 as follows: 

(w, Tw) < liwli IITwIl < ?TI IIWII2. 

The right part of (2.23) has been proved by Lemma 2.2. The left part can be 
verified by using Lemma 2.1 as follows: 

IIwI12 < (2 + Co)(w,Tw) < (2 + Co)IllwlllTwll, 

which leads to 

I1wI12 < (2+ Co)2 1Tw12. 

2.3. Convergence. Let us now investigate the convergence of the iterative Algo- 
rithm 2.1. 

Theorem 2.2. Let Un+1 be given by (2.4), and let u be the solution of (2.1). 
Assume that the assumption Hi is satisfied. Assume that the initial guess uo E K 
and that, at each iterative step n, U - Un has an admissible decomposition with 
respect to {Kn,i} and a fixed constant Co independent of n. Then, there exists a 
fixed To E (0,1) such that 

(2.24) IIu - Un+ 12 <InoI||U-Un 112, 

provided that the parameter p is sufficiently small. 

Proof. The error recurrence for {un} is given by (2.9): 

en+1 = (I - pTn)en. 

It follows that 

11en+1 112 = Ilen12- 2p(Tnen,en) + p2(Tnen,Tnen). 

Using Theorem 2.1, we obtain 

(2.25) || 2 < (1 - 2p(2 + Co)-1 + p2IT12) 112- 

Thus, there exists an To E (0, 1) such that 

1 -2p(2 + Co) + p2IT12 < TO 

for sufficiently small p. This proves our theorem. El 
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Remark 2.1. The function 

g(p) = 1 - 2p(2 + Co)-1 + p21T12 

attains its minimum value 

9(Po) 1 (2 + Co)1T12 

at p0 = 1/(2 + C0)1T12. But such a p0 may not be a candidate, since the corre- 
sponding approximation un+1 = un + poTn(u - un) may not be a vector in K. 

3. AN APPLICATION IN THE DOMAIN DECOMPOSITION METHOD 

The abstract result established in Section 2 has applications in many applied 
sciences such as fluid flow in porous media, obstacle problems, and the valuation 
of American options in modern finance. For simplicity, we shall illustrate the idea 
for obstacle problems only. 

Let Q be an open bounded domain in RTn, n E N, with Lipschitz continuous 
boundary rI = aQ. Assume that aQ = rl U r2, rL nr2 = 0, is a partition of 
the boundary such that meas(I'l) > 0. We consider the Sobolev space V = {v E 

H1(Q) : v = 0 on IL}, the convex set 

(3.1) K = {v E V: v > 0 in Q}, 

and the problem of finding u E K such that 

(3.2) a(u,v - u) > f(v - u), Vv E K, 

where a(., ) is a symmetric, continuous, and positive definite bilinear form on V x V 
and f E V', V' being the dual of V. 

We remark that if the convex set K of the above problem is of the form {v E 

V: v>ainQ},aEV,or{vEV: v<fdinQ},3EGV,bytakingw=u-a 
or w = d - u we can reduce the problem to a study of the inequality (3.2) with a 
convex set given as in (3.1). 

For simplicity, the analysis can be restricted to the following model bilinear form: 

(3.3) a(v,w) = vv v.Vwdx, v,w E V. 

Observe that the problem (3.2) has a unique solution in the given convex set K. Our 
objective is to approximate the solution u efficiently by using an additive Schwarz 
domain decomposition method. 

First, we decompose the domain into overlapping subdomains: 
J 

(3.4) Q= U Q 
i=l 

where the QW's are open subdomains with Lipschitz continuous boundary. Second, 
we define 

Vi = {vi E V : v = 0 in Q-Q}, 

for i = 1, , J. Next, we apply the abstract theory of Section 2 to approximate the 
solution u of (3.2). The following is a slightly different but equivalent statement of 
the iterative Algorithm 2.1. 

Algorithm 3.1. Starting from any initial guess uo E K, the method computes a 
sequence of approximations {Un} as follows: 
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1. Assume that un is known. Consider the convex set 

(3.5) Kn,i = {vi E Vi :Vi + Un E K}. 

For each i E {1, , J}, compute vn,i EE Kn by solving 

(3.6) a(un + vni, V - Vn,i ) > f (v-Vn,i ) X Vv E Kn,i 

2. Update the approximation by 
J 

(3.7) Un+1 = Un + P Vn,ii 

i=1 

where p should be selected so that Un+1 E K. 

The parameter p is not necessarily a constant in the Schwarz method. For 
example, one can use any smooth positive function p = p(x) in (3.7). The following 
lemma provides a useful criterion for the selection of p. 

Lemma 3.1. For any x E Q, let N(x) be the number of subdomains containing x. 
If p is selected as a smooth positive function such that 

(3.8) p(x)N(x) < 1, Vx EE Q 

then the approximation Un+1 from (3.7) is a function in the convex set K. Also, 
the convergence proved in Theorem 2.2 holds in this case if 

I - 2pj(1 - CO)- + P21T12 < To < 1 

where P1 = min. p(x) and P2 = maxx p(x). 

Proof. First, for any x E Q, 
J 

Zvn,i(x) > N(x) minvn,i(x). 
i=l1 

Thus, from (3.7) and (3.8), 
J 

Un+ 1 (X) =Un (X) + p(X) ZVn,i (X) 

i=l1 

? Un(x) + p(x)N(x) minnvn,i(X). 

If mini Vn,i(x) > 0, then we naturally have un+1 (x) > 0 from the above inequality. 
If mini Vn,i(X) < 0, then by (3.8) 

Un + (X) > un (X) + p(x)N(x) min vn,i (x) > un + min Vn,i (X) > 0, 
i ~~~~~~~~i 

where, at the last step, we have used the fact that un(X)+vn,i(X) > 0 for any i E J. 
Regarding the second part of the lemma, we see that it follows immediately from 

Ien+1 12 < (I - 2pi(2 + Co)- + P21I12) IlenI12 

instead of (2.25). El 

The above iterative algorithm is essentially an additive method which can be 
easily parallelized on parallel machines. To prove convergence by using the abstract 
result established in Section 2, we ought to show first that the assumption Hi is 
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satisfied for the model problem (3.2). With Un,i = Un + Vnj,i we can rewrite (2.6) 
as follows: Find Un,i E Kn,i + un such that 

(3.9) a(Un,iv -Un,i) > a(u, v-Un,i), Vv un + Kn,i 

Then, the assumption Hi is equivalent to the equivalence of (3.9) and (3.6). 

Lemma 3.2. Let u be the solution of (3.2) and Un,i the solution of the inequality 
(3.9). If the n-th step approximation Un satisfies 

Un EE K, U -Un EE K, 

then 

Un,i EE K, u -Un,i C K. 
Furthermore, the inequalities (3.9) and (3.6) are equivalent in the sense that if Un, 
solves (3.9) and vn,i solves (3.6), then Un,i = un + Vn, 

Proof. 1. Let 

Q, E xE Qi : Un,i > ?}- 

By letting v = un,i ? ?wi in (3.9) we get 

(3.10) a(Un,i-u, wi) = 0, Vwi EC Vi, wi = O on Q-Q+. 

2. We show that u -Un,i E K. To this end, let 

Di = {x E Q: un,i-u > }. 

We claim that Di C Qt. In fact, if x C Di, then 

(3.11) un,i(x) > u(x) > 0. 

Since in Q - Qi we have Un,i = un < u, then (3.11) implies that x E Qi and 
un,i(x) > 0. Hence, x c Qi+ 

Observe that U-Un E K (i.e., u > un) and, therefore, Un,i - u = un- u < 0 on 
aQi n Q. Since Di c Q+ the function 

Sz |Un,i(x)- u(x), x XEE Di, 

ol x E, xQ -Di, 

lies in Vi and vanishes in Q - Q+. Replacing wi in (3.10) by qi gives 

a(q5i, q5i) = 0, 

which implies that qi- 0. Thus, Di must be the empty set. This shows that 
u -Un,i > 0 and, therefore, u -Un,i E K. 

3. Now we show that the inequalities (3.9) and (3.6) are equivalent in the sense 
stated in the theorem. In fact, from (3.9) we have 

(3.12) a(Un,, v - Un,i) > a(u, v - Un,i) = a(u, v) - a(u, Un,i), 

for any v E Kn + un C K. It is clear that 

a(u, v) > f (v), 

and since u -Un,i E K, we have 

-a(u, Un,i) = a(u, u -Un,i - u) > f (u -Un,i - u) = f (-Un,i) 

Substituting the last two relations into (3.12), we obtain 

a(Un,i, v- Un,i) > f (v - Un,i) Vv E Un + Kn, 
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By letting v,,i = Un,i- un we see that vn,i provides a solution for (3.6). This, 
together with the uniqueness of the solution of (3.9) and (3.6), yields the desired 
equivalence. 0 

We have already proved in Lemma 3.1 that the new approximation Un+1 lies in 
K as long as Un Ec K and p(x)N(x) < 1. Assume that U-Un E K. We would like 
to know if U-Un+- E K is valid under the same constraint on p. The answer is 
positive. To see why, first observe that, by (3.7), 

J 

U-Un+1 = U-Un-ZPE Vn,i- 

i=1 

Notice that from Lemma 3.2 we have un + vn,i = un,i < u. Thus, 

J 
Zvn,i (x) < N(x) (u(x) -Un (X)). 

i=1 

It follows that 
J 

U - Un - 
PEVn,i > u - Un- pN(x)(u - Un) = (1 - pN)(u - un) > 0. 

i=1 

Hence, U-Un+1 E K. The result can be summarized as follows: 

Theorem 3.1. Let u be the solution of the inequality (3.2), and let {Un} be a 
sequence of approximations given by Algorithm 3.1 in which the parameter p is 
selected according to Lemma 3.1. If the initial guess uo is selected such that uo, u - 
uo E K, then Un+, U - Un+ E K. Furthermore, the problem (3.6) is equivalent to 
(3.9) in the sense that Un,i = un + Vn,i. 

Let us investigate the convergence of the proposed iterative Algorithm 3.1. Since 
the method fits the general framework proposed in Section 2, we can obtain con- 
vergence by verifying the conditions of Theorem 2.2. 

First, we claim that the matrix T is bounded. In fact, the boundedness of T 

depends on the number of overlaps (namely, the function N(x)) in the domain 
decomposition. In practical computations, the domain Q is often decomposed so 
that ITI has an upper bound independent of the number of subdomains. 

Second, we claim that, under certain conditions imposed on the domain decom- 
position, at each iterative step n, the error u - un has an admissible decomposition 
with respect to {Kn,i} and a certain constant Co. In fact, for a certain decom- 
position of the domain (see [1] or [14], for instance) we can find some sufficiently 
smooth functions {qi} with supp(qi) c Qi satisfying in Q 

J 

i=-1 

With vi = (u - un)qi, we have 

J 

U-Un = EVi 

i=1 

and vi E Kn,i. Furthermore, there exists a constant Co, depending only on toil, 
such that (2.15) is satisfied. 
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4. AN APPLICATION TO FINITE ELEMENT APPROXIMATIONS 

Consider the approximate solution of (3.2) by finite element methods. Let Vh be 
a finite element subspace of V and denote by 

Kh = {Vh E Vh Vh(X) > 0 V nodal points x} 

a convex subset of Vh. The discrete problem of (3.2) seeks uh E Kh such that 

(4.1) a(uh,v-Uh) > f(v-Uh), Vv E Kh 

Observe that Kh need not be a subset of K. 
Our objective here is to approximate uh by overlapping domain decomposition 

methods analogous to the method described in the previous section for the contin- 
uous problem. 

To this end, assume that the domain Q is decomposed into a set of overlapping 
subdomains satisfying (3.4), and that the meshes of the subdomains align well with 
that of Q along the boundary. Corresponding to each subdomain Qi, we have a 
subspaceVhi= Vhn Vi for i = 1,... , J. 

The following is an iterative algorithm using the information provided by each 
subdomain. The algorithm resembles Algorithm 3.1 in appearance. 

Algorithm 4.1. Starting from any initial guess uh EC Kh, the method computes a 
sequence of approximations {uh } as follows: 

1. Assume that unh is known. Consider the convex set 

(4.2) Kn,i = {Wi E Vhi : Wi + Uh E Kh}- 

For each i E {1, ..., J}, compute vi E Kn,i by solving 

(4.3) a(u h+ Vi , v- Vi) > f (v -vi) , Vlv EE Kn,i- 

2. Update the approximation by 
J 

(4.4) uh+1 =Uh+PjV. 

i=1 

The convergence of Algorithm 4.1 can be established by using the general result 
presented in Section 2. The analysis is similar to the one in Section 3 for the 
continuous case. The only difficulty here is in the verification of the assumption 
Hi. Observe that this assumption really requires the equivalence of (4.3) with the 
following problem: 

a(uh + Vn,i, V - Vni) > a(Uh, V-Vn,i) Vv E Kn,i- 

In the following, we shall use the notation uh = Uh + Vn,i. 

Lemma 4.1. Let {(pi}i=,- ,N be the standard nodal basis function of the finite 
element space Vh. Assume that 

(4.5) a(oj, k) < 0 whenever j $& k. 

If the iterative approximation uh satisfies 

(4.6) Uh EKh, Uh-U$ cKh, 

then 

Un i C Kh, Uh - UnCi Kh 
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Proof. It is not hard to see that u ihis also characterized as the solution of 

(4.7) a(uh i, - uhi) > a(uh, v - Uh.) Vv E Kn,i + uh. 

1. Let K = {x; } be the set of nodal points. Denote by KA+i the subset of K on 
which uh > 0. It is routine to show that 

(4.8) a(u$ - Uh, (Oj) = 0 

for any nodal basis fo corresponding to nodal points in 
X.+ 

2. Let us verify that uh - U hE Kh. Observe that it is equivalent to 

(4.9) Uh(X3) - Uh((X3) > 0, Vxj E K. 

Denote by Mi the subset of K on which 

(4.10) uh i(xi) - Uh(X3) > 0, x E Mi. 
We wish to show that Mi = 0. To this end, we consider the following decomposi- 
tion: 

(4.11) uh i(x) -Uh(X)= E e3Oj (x) + Z Qk(Pk(X), 
.zEMz .XkEA-M, 

where oj = uh i(Xj) - Uh(Xj). Call the first term on the right-hand side of (4.11) 

w, and the second term w2. Observe that (4.10) implies Mi C A(.+.. It follows 
from (4.8) that 

a(uhi - Uh,Wl) =0, 

which leads from (4.11) to 

a(w, + W2,W) =0 . 

Thus, 

(4.12) a(w, wi) = -a(w2,w) = -Z OjOka((pk, pOj)- 
j,k 

Notice that oj > 0, k < 0, and a(yk, f) < 0. Thus, the right-hand side of (4.12) 
is non-positive. This together with the coercivity of the bilinear form a(.,-) shows 
that w, = 0, which is possible only if Mi = 0. E] 

Similarly to the proof of Theorem 3.1, one can show that the sequence of ap- 
proximations {uh} satisfies (4.6), provided the initial guess uh is selected with the 
same property. The next theorem gives the equivalence of inequalities (4.3) and 
(4.7), which verifies the validity of the assumption Hi for the present application. 

Theorem 4.1. Assume that (4.5) is satisfied, Uh is the solution of (4.1), and the 
initial guess is selected to satisfy (4.6). Let {uh} be the sequence of approximations 
obtained from Algorithm 4.1. Then, each iterative approximation un satisfies (4.6). 
Moreover, the inequalities (4.3) and (4.7) are equivalent in the sense that if vi solves 
(4.3) and u i. solves (4.7), then vi = Un- u. 

Proof. It is clear that (4.3) is equivalent to finding ii$i = uh + vz E Kn,i + Uh 

satisfying 

(4.13) a(in j, v n- i) > f n(v- j,h) Vv E Kn,i +n 

It suffices to prove the equivalence of (4.13) with (4.7). 
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Let uh i be the solution of (4.7). It follows that 

a(uh v - uV- ) > a(Uh, V -U h 
= a(uh, v) - a(Uh, Un,i) 

> f (v) + a(uh, Uh -_ - Uh), 

for all v E Kn,i + uh. Since Uh - i E Kh, then 

a(u 
hi)v-uh) 

> f(V - J) 

which shows that the solution of (4.7) also solves (4.13). This completes the equiv- 
alence, since both problems have a unique solution. O 

Finally, we remark that it is always possible to construct an admissible decom- 
position for Uh - uh with respect to Kn,i and a constant Co in the finite element 
method. Consequently, the general convergence result of Section 2 assures geomet- 
rical convergence of Algorithm 4.1. 

Concerning the condition (4.5), we shall give a simple example for which it is 
satisfied. Let us consider the bilinear form given in (3.3) using piecewise linear 
finite elements for a domain Q C Rn, n = 1,2,3. 

* When n = 1, the property (4.5) is evidently satisfied. 
* When n = 2, let T be a triangle with vertices P1, P2, and P3. If 9o is the shape 

function corresponding to P1, then the vector Vf 1 is in the same direction as 
the inner normal vector on the edge P2P3. Consequently, the property (4.5) 
holds true if all the angles of the triangle are acute. 

* When n = 3, let T be a tetrahedron with vertices P1, P2, P3, and P4. Consider 
the shape function 9i corresponding to P1. Again, the gradient vector V01 
points in the same direction as the inner normal vector on the triangular face 
containing P2, P3, and P4. Thus, if the angle between any two faces is acute, 
then the property (4.5) holds true. 
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